MODULE 2: ALGORITHMIC
THINKING

57 Session 2: Fundamentals of coding and
algorithms 2

Searching and sorting are fundamental operations
In computer science and are integral to many
algorithms and data processing tasks.
Understanding these algorithms is crucial for
efficient data retrieval and organization.

Z
tH g =
/ /

= /
/

/’

1. Searching Algorithms:

Searching algorithms are used to find the position of an element in a data
structure (like an array or list).

Here are some common searching algorithms:

1.1 Linear Search:

A straightforward method that checks each element in a list sequentially
until the desired element is found or the list ends.

% Time Complexity: O(n), where n is the number of elements in the list.
* Use Case: Suitable for small or unsorted lists

/Exam P le:

def linear_search(arr,
target):

for 1 in range(len(arr)):

If arr[i] == target:
return i
return -1

Example usage

arr =[10, 23, 45, 70, 11,
15]

target = 70
print(linear_search(atrr,
target)) # Output: 3

Explanation:

Linear search sequentially
checks each element in the
list to find the target value.
In this example, the
algorithm finds the target 70
at index 3. The time
complexity of linear search
IS O(n), meaning the time it
takes to complete the
search grows linearly with
the size of the list.

An efficient algorithm that repeatedly divides a sorted

list in half, reducing the search area until the target

element is found or the list is exhausted.

e Time Complexity: O(log n), where n is the
number of elements in the list.

e Use Case: Suitable for large, sorted lists

o Example:

def binary_search(arr, target):

left, right = 0, len(arr) -
while left <= right:
mid = (left + right) //
If arr[mid] == target:
return mid
elif arr[mid] < target:
left=mid + 1
else:
right=mid - 1
return -1

Test the function
arr=1[2,3,4,7, 9]
print(binary_search(arr, 7)) #
Output: 3

Explanation:

The algorithm checks the middle
element, and if it matches the
target, it returns the index. If the
target is smaller, it continues
searching in the left half; if larger,
in the right half. In this example,
the function successfully finds the
target “/” at index “3”. The time
complexity of binary search is
O(log n), making it much faster
than linear search for large lists.

" Sorting algorithms arrange the elements of a list
or array in a specific order, typically ascending or
descending.

Here are some commonly used sorting
algorithms:

= =

| CH & =

|] |

i = !
! — !
X /
4 //

A simple comparison-based algorithm that

repeatedly steps through the list, compares

adjacent elements, and swaps them if they are in

the wrong order.

e Time Complexity: O(n"*2) in the worst and
average cases.

e Use Case: Educational purposes or small
datasets.

\ “Example:

def bubble sort(arr):
n = len(arr)
for i in range(n):

for j in range(0, n-i-1):

if arr[j] > arr[j+1]:
arr[j], arr[j+1] =
arr[j+1], arr[j]

Example usage

arr = [64, 34, 25, 12, 22,
11, 90]

bubble _sort(arr)

print("Sorted array is:", arr)

Output: [11, 12, 22, 25,
34,64,90]

Explanation:

The function “bubble_sort”
sorts the list “[64, 34, 25,
12, 22, 11, 9@]” in
ascending order. The time
complexity of Bubble Sort is
O(n?), making it inefficient for
large lists compared to more
advanced algorithms like
quicksort or mergesort.

Builds the final sorted array one item at a time by
repeatedly picking the next item and inserting it
Into its correct position among the previously
sorted items.

e Time Complexity: O(n™2) in the worst case.
e Use Case: Efficient for small or nearly sorted
datasets

(L]
~Example:

def insertion_sort(arr):
Traverse through 1 to len(arr)
for iin range(1, len(arr)):
key = arr[l]
J=1-

while j >= 0 and key < arr[j]:
arr[] + 1] = arrfj]
J -=

arr[j + 1] = key

Example usage

arr=[12, 11, 13, 5, 6]
Insertion sort(arr)
print("Sorted array is:", arr) #
Output [5, 6,11, 12, 13]

Explanation:

The function insertion_sort
sorts the list [12, 11, 13, 5,
6] in ascending order. The
algorithm is efficient for small
datasets or nearly sorted data,
with a time complexity of O(n?) in
the worst case.

= —

i = 4 i
| 7
| —

b,

=

/

!

/
/’

A divide-and-conquer algorithm that divides the
list into smaller sublists, sorts them, and then
merges the sorted sublists to produce the final
sorted list.

e Time Complexity: O(nlog n) in all cases.

e Use Case: Suitable for large datasets.

(L]
_\ — /f
~Example:

def merge_sort(arr):
if len(arr) <=
return arr
mid = len(arr) // 2
left = merge_sort(arr[:mid])
right = merge_sort(arr[mid:])

return merge(left, right)

def merge(left, right):
result = []

while i < len(left) and j < len(right):

if left]i] < right[j]:

result.append(left[i])
i +=1

else:
result.append(right[j])
e 1
result.extend(left[i:])
result.extend(right(j:])
return result

Example usage

arr = [38, 27, 43, 3, 9, 82, 10]
sorted_arr = merge_ sort(arr)
print("Sorted array is:"
sorted_arr) # Output: [3 9,
10, 27, 38, 43, 82]

A divide-and-conquer algorithm that works by selecting a

"pivot" element and partitioning the array around the pivot.

The elements smaller than the pivot go to one side, and the

elements larger than the pivot go to the other side. The

process is then repeated recursively for each partition.

e Time Complexity: O(n log n) in all cases.

e Use Case: Sorting large datasets, efficient average-case
sorting

(arr, low, high):

pivot = arr[high]

1= low-

j in range(low, high):
arr(j] <= pivot:
i+

arr[i], are[] = arr[j], are[i]

arr[i + 1], arr[high] = arr[high], arr[i + 1]

1+

(arr, low, high):
low < high:

pi = partition(arr, low, high)

quick_sort_in place(arr, low, pi - 1)

quick sort_in place(arr, pi + 1, high)

arr:[.l))) 3)]

quick_sort_in_place(arr, ©, len(arr) - 1)

print()

Activity
You are given an unsorted array of integers:

arr = [33, 14, 27, 35, 10, 19, 42, 44]

You are required to implement five different sorting algorithms to
sort this array in ascending order.

Questions to Answer:
s Write Python functions for each of the above sorting
algorithms?

% Compare and discuss the time complexity and space
complexity of each sorting algorithm?

< Which algorithm performs the best when the array is

already sorted?

\/ Activity Feedback

Question 2: Merge Sort and Quick Sort both have an average-case time

complexity of O(n log n), making them the most efficient for typical inputs.

Question 3: Insertion Sort performs best when the array is already
sorted with a time complexity of O(n). It only compares adjacent
elements and does not require any swaps, so it's highly efficient for

nearly sorted arrays.

< This marks the end of Module 2.

<« In the next Module we will learn about
Project-based learning.

THANK YOU

	Slide 1: MODULE 2: ALGORITHMIC THINKING
	Slide 2: Session 2: Fundamentals of coding and algorithms 2
	Slide 3: Searching and Sorting Algorithms
	Slide 4: Types of Searching and Sorting Algorithms
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Activity
	Slide 18: Activity Feedback
	Slide 19

