
MODULE 2: ALGORITHMIC

THINKING

Session 2: Fundamentals of coding and

algorithms 2

Searching and Sorting

Algorithms

Searching and Sorting Algorithms

Searching and sorting are fundamental operations

in computer science and are integral to many

algorithms and data processing tasks.

Understanding these algorithms is crucial for

efficient data retrieval and organization.

Types of Searching and Sorting

Algorithms
1. Searching Algorithms:

Searching algorithms are used to find the position of an element in a data
structure (like an array or list).

Here are some common searching algorithms:

1.1 Linear Search:

A straightforward method that checks each element in a list sequentially
until the desired element is found or the list ends.

❖ Time Complexity: O(n), where n is the number of elements in the list.
❖ Use Case: Suitable for small or unsorted lists

Example:

def linear_search(arr,
target):

for i in range(len(arr)):
if arr[i] == target:

return i
return -1

Example usage
arr = [10, 23, 45, 70, 11,
15]
target = 70
print(linear_search(arr,
target)) # Output: 3

Explanation:

Linear search sequentially
checks each element in the
list to find the target value.
In this example, the
algorithm finds the target 70
at index 3. The time
complexity of linear search
is O(n), meaning the time it
takes to complete the
search grows linearly with
the size of the list.

An efficient algorithm that repeatedly divides a sorted

list in half, reducing the search area until the target

element is found or the list is exhausted.

● Time Complexity: O(log n), where n is the

number of elements in the list.

● Use Case: Suitable for large, sorted lists

1.2 Binary Search

Example:

def binary_search(arr, target):
left, right = 0, len(arr) -
while left <= right:

mid = (left + right) //
if arr[mid] == target:

return mid
elif arr[mid] < target:

left = mid + 1
else:

right = mid - 1
return -1

Test the function
arr = [2, 3, 4, 7, 9]
print(binary_search(arr, 7)) #
Output: 3

Explanation:

The algorithm checks the middle
element, and if it matches the
target, it returns the index. If the
target is smaller, it continues
searching in the left half; if larger,
in the right half. In this example,
the function successfully finds the
target “7” at index “3”. The time
complexity of binary search is
O(log n), making it much faster
than linear search for large lists.

Sorting algorithms arrange the elements of a list

or array in a specific order, typically ascending or

descending.

Here are some commonly used sorting

algorithms:

2. Sorting Algorithms

A simple comparison-based algorithm that

repeatedly steps through the list, compares

adjacent elements, and swaps them if they are in

the wrong order.

● Time Complexity: O(n^2) in the worst and

average cases.

● Use Case: Educational purposes or small

datasets.

2.1 Bubble Sort

Example:

def bubble_sort(arr):
n = len(arr)
for i in range(n):

for j in range(0, n-i-1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] =
arr[j+1], arr[j]

Example usage
arr = [64, 34, 25, 12, 22,
11, 90]
bubble_sort(arr)
print("Sorted array is:", arr)
Output: [11, 12, 22, 25,
34, 64, 90]

Explanation:

The function “bubble_sort”
sorts the list “[64, 34, 25,
12, 22, 11, 90]” in
ascending order. The time
complexity of Bubble Sort is
O(n²), making it inefficient for
large lists compared to more
advanced algorithms like
quicksort or mergesort.

Builds the final sorted array one item at a time by

repeatedly picking the next item and inserting it

into its correct position among the previously

sorted items.

● Time Complexity: O(n^2) in the worst case.

● Use Case: Efficient for small or nearly sorted

datasets

2.2 Insertion Sort

Example:

def insertion_sort(arr):
Traverse through 1 to len(arr)
for i in range(1, len(arr)):

key = arr[i]
j = i - 1

while j >= 0 and key < arr[j]:
arr[j + 1] = arr[j]
j -= 1

arr[j + 1] = key

Example usage
arr = [12, 11, 13, 5, 6]
insertion_sort(arr)
print("Sorted array is:", arr) #
Output: [5, 6, 11, 12, 13]

Explanation:

The function insertion_sort
sorts the list [12, 11, 13, 5,
6] in ascending order. The

algorithm is efficient for small

datasets or nearly sorted data,

with a time complexity of O(n²) in

the worst case.

A divide-and-conquer algorithm that divides the

list into smaller sublists, sorts them, and then

merges the sorted sublists to produce the final

sorted list.

● Time Complexity: O(n log n) in all cases.

● Use Case: Suitable for large datasets.

2.3 Merge Sort

Example:

def merge_sort(arr):
if len(arr) <= 1:

return arr
mid = len(arr) // 2
left = merge_sort(arr[:mid])
right = merge_sort(arr[mid:])

return merge(left, right)

def merge(left, right):
result = []
i = j = 0
while i < len(left) and j < len(right):

if left[i] < right[j]:
result.append(left[i])
i += 1

else:
result.append(right[j])
j += 1

result.extend(left[i:])
result.extend(right[j:])
return result

Example usage
arr = [38, 27, 43, 3, 9, 82, 10]
sorted_arr = merge_sort(arr)
print("Sorted array is:",
sorted_arr) # Output: [3, 9,
10, 27, 38, 43, 82]

A divide-and-conquer algorithm that works by selecting a

"pivot" element and partitioning the array around the pivot.

The elements smaller than the pivot go to one side, and the

elements larger than the pivot go to the other side. The

process is then repeated recursively for each partition.

● Time Complexity: O(n log n) in all cases.

● Use Case: Sorting large datasets, efficient average-case

sorting

2.4 Quick Sort

Activity
You are given an unsorted array of integers:

arr = [33, 14, 27, 35, 10, 19, 42, 44]
You are required to implement five different sorting algorithms to
sort this array in ascending order.

Questions to Answer:
❖ Write Python functions for each of the above sorting

algorithms?
❖ Compare and discuss the time complexity and space

complexity of each sorting algorithm?
❖ Which algorithm performs the best when the array is

already sorted?

5 minsPAUSE

Activity Feedback

Question 2: Merge Sort and Quick Sort both have an average-case time

complexity of O(n log n), making them the most efficient for typical inputs.

Question 3: Insertion Sort performs best when the array is already

sorted with a time complexity of O(n). It only compares adjacent

elements and does not require any swaps, so it's highly efficient for

nearly sorted arrays.

❖ This marks the end of Module 2.

❖ In the next Module we will learn about

Project-based learning.

THANK YOU

	Slide 1: MODULE 2: ALGORITHMIC THINKING
	Slide 2: Session 2: Fundamentals of coding and algorithms 2
	Slide 3: Searching and Sorting Algorithms
	Slide 4: Types of Searching and Sorting Algorithms
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Activity
	Slide 18: Activity Feedback
	Slide 19

