
MODULE 2: ALGORITHMIC

THINKING

Session 1: Algorithmic Thinking 2

Problem Solving Approaches

and Heuristics

Problem Solving Approaches and

Heuristics

Problem Solving Approaches and

Heuristics are strategies and techniques

used to find solutions to complex problems

efficiently. In algorithmic thinking, these

methods help in devising algorithms that

solve problems effectively

Problem Solving Approaches

Divide and Conquer is a strategy where a

problem is divided into smaller, more

manageable sub-problems, each of which is

solved independently. The solutions to these

sub-problems are then combined to solve the

original problem.

1. Divide and Conquer

Steps:
● Divide: Break the problem into smaller subproblems that are

easier to handle.

● Conquer: Solve each sub-problem recursively.

● Combine: Merge the solutions of the sub-problems to get the

solution to the original problem.

Example: Merge Sort
● Problem: Sort an array of numbers.

● Solution:

○ Divide: Split the array into two halves.

○ Conquer: Recursively sort each half.

○ Combine: Merge the sorted halves into a single sorted

array.

Divide and Conquer Cont…..

Greedy Algorithms make the locally optimal

choice at each step with the hope of finding a

global optimum. They work by making decisions

that seem best at the moment, without

considering the overall problem.

2. Greedy Algorithms

Steps:
● Select: Choose the best option available at each step.

● Evaluate: Check if this choice leads to a valid solution.

● Repeat: Continue until a complete solution is achieved.

Example: Kruskal’s Algorithm

● Problem: Find the Minimum Spanning Tree (MST) of a

graph.

● Solution:
○ Select: Sort all edges by weight.

○ Evaluate: Add the smallest edge to the MST if it doesn’t

form a cycle.

○ Repeat: Continue until all vertices are connected.

Greedy Algorithms Cont….

Dynamic Programming (DP): solves problems by

breaking them into simpler overlapping

subproblems and storing the results of these sub-

problems to avoid redundant calculations

3. Dynamic programming

Steps:
● Define Sub-Problems: Break down the problem into simpler,

overlapping subproblems.

● Store Results: Save solutions to sub-problems in a table (or

array).

● Build Solution: Use stored results to build up the solution to the

original problem.

Dynamic programming Cont….

Example: Fibonacci Sequence
● Problem: Compute the nth Fibonacci number.

● Solution:

○ Define Sub-Problems: Calculate Fibonacci numbers for

smaller values.

○ Store Results: Use a table to store Fibonacci numbers as

they are computed.

○ Build Solution: Use the stored results to compute higher

Fibonacci numbers.

Dynamic programming Cont….

Backtracking involves incrementally building a

solution and abandoning it as soon as it is

determined that the current path cannot be

extended to a valid solution. It explores all

potential solutions and reverts when a solution

fails.

4. Back tracking

Steps:
● Build Solution: Add elements incrementally to build a partial solution.

● Check Validity: Verify if the current solution is valid.

● Backtrack: If the current solution is invalid, remove the last added

element and try a different option.

Example: Sudoku Solver

● Problem: Solve a Sudoku puzzle by filling in the grid.

● Solution:

○ Build Solution: Place numbers in empty cells.

○ Check Validity: Ensure no numbers violate Sudoku rules.

○ Backtrack: If a number placement leads to a conflict, remove it

and try another number.

Back tracking Cont….

Problem Solving Heuristics

Simplify the problem to a more manageable

version, solve that, and then extend the

solution to the original problem.

1. Problem Simplification

Apply solutions from similar problems or

recognize recurring patterns in the current

problem.

2. Analogies and Pattern Matching

Start from the goal and work in reverse to figure

out the steps needed to reach it.

Example: In mathematical proofs or maze

solving, work from the solution back to the start.

3. Working Backward

Divide a complex problem into smaller, more

manageable parts, solve each part, and then

integrate the solutions.

Example: Breaking a software project into

modules or components.

4. Decomposition

Experiment with possible solutions, learn from

failures, and iterate until you find a working

solution.

5. Trial and Error

Example: Scheduling Tasks with

Deadlines and Penalties

Imagine you are given a set of tasks, each with a

specific deadline and a penalty associated if it is

not completed by that deadline. The goal is to

determine the optimal order in which to complete

the tasks to minimize the total penalty.

For Example:

Task Deadline Penalty

A 2 days $ 200

B 1 day $ 500

C 3 days $ 100

Approach: Greedy Heuristic

Prioritize tasks based on a cost-benefit ratio,

such as minimizing penalties. In this scenario,

the heuristic would focus on completing tasks

with the highest penalties first if their deadlines

allow.

Why Greedy ?

The greedy approach works well here because

by always choosing the task with the highest

penalty first (if possible), we minimize the overall

penalty.

This heuristic works because the most expensive

tasks have a higher cost of delay, so completing

them earlier reduces potential penalties.

Activity

You are tasked with designing and implementing

sorting algorithms using a set of numbered index

cards, focusing on understanding different

algorithmic techniques and how they work in

practice.

5 minsPAUSE

❖ This marks the end of this lesson.

❖ In the next lesson we will learn about

Mathematical Foundations of Algorithms

THANK YOU

	Slide 1: MODULE 2: ALGORITHMIC THINKING
	Slide 2: Session 1: Algorithmic Thinking 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

