MODULE 2: ALGORITHMIC
THINKING

5 Session 1: Algorithmic Thinking 2

Problem Solving Approaches and
Heuristics are strategies and techniques
used to find solutions to complex problems
efficiently. In algorithmic thinking, these
methods help In devising algorithms that
solve problems effectively

1. Divide and Conquer

Divide and Conquer Is a strategy where a
problem is divided into smaller, more
manageable sub-problems, each of which is
solved independently. The solutions to these
sub-problems are then combined to solve the

original problem.

Divide and Conquer Cont.....

Steps:
e Divide: Break the problem into smaller subproblems that are

easier to handle.
e Conquer: Solve each sub-problem recursively.
e Combine: Merge the solutions of the sub-problems to get the

solution to the original problem.

Example: Merge Sort
e Problem: Sort an array of numbers.

e Solution:
o Divide: Split the array into two halves.
o Conquer: Recursively sort each half.
o Combine: Merge the sorted halves into a single sorted

array.

2. Greedy Algorithms

Greedy Algorithms make the locally optimal
choice at each step with the hope of finding a
global optimum. They work by making decisions
that seem Dbest at the moment, without
considering the overall problem.

Greedy Algorithms Cont....

Steps:
e Select: Choose the best option available at each step.
e Evaluate: Check if this choice leads to a valid solution.
e Repeat: Continue until a complete solution is achieved.
Example: Kruskal’s Algorithm
e Problem: Find the Minimum Spanning Tree (MST) of a
graph.
e Solution:
o Select: Sort all edges by weight.
o Evaluate: Add the smallest edge to the MST if it doesn'’t

form a cycle.
o Repeat: Continue until all vertices are connected.

3. Dynamic programming

Dynamic Programming (DP): solves problems by
breaking them into simpler overlapping
subproblems and storing the results of these sub-
problems to avoid redundant calculations

Dynamic programming Cont....

Steps:

e Define Sub-Problems: Break down the problem into simpler,
overlapping subproblems.

e Store Results: Save solutions to sub-problems in a table (or

array).
e Build Solution: Use stored results to build up the solution to the

original problem.

Dynamic programming Cont....

Example: Fibonacci Sequence
e Problem: Compute the nth Fibonacci number.
e Solution:
o Define Sub-Problems: Calculate Fibonacci numbers for
smaller values.
o Store Results: Use a table to store Fibonacci numbers as
they are computed.
o Build Solution: Use the stored results to compute higher
Fibonacci numbers.

4. Back tracking

Backtracking involves incrementally building a
solution and abandoning it as soon as it is
determined that the current path cannot be
extended to a valid solution. It explores all
potential solutions and reverts when a solution

fails.

=X Back tracking Cont....
Steps:

e Build Solution: Add elements incrementally to build a partial solution.
e Check Validity: Verify if the current solution is valid.
e Backtrack: If the current solution is invalid, remove the last added

element and try a different option.

Example: Sudoku Solver
e Problem: Solve a Sudoku puzzle by filling in the grid.
e Solution:
o Build Solution: Place numbers in empty cells.
o Check Validity: Ensure no numbers violate Sudoku rules.
o Backtrack: If a number placement leads to a conflict, remove it

and try another number.

1. Problem Simplification

Simplify the problem to a more manageable
version, solve that, and then extend the
solution to the original problem.

|
/
/

= 9 Analogies and Pattern Matching

Apply solutions from similar problems or
recognize recurring patterns Iin the current
problem.

3. Working Backward

Start from the goal and work in reverse to figure
out the steps needed to reach it.

Example: In mathematical proofs or maze
solving, work from the solution back to the start.

4. Decomposition

Divide a complex problem into smaller, more
manageable parts, solve each part, and then
Integrate the solutions.

Example: Breaking a software project into
modules or components.

5. Trial and Error

Experiment with possible solutions, learn from
failures, and iterate until you find a working
solution.

Imagine you are given a set of tasks, each with a
specific deadline and a penalty associated if it is
not completed by that deadline. The goal is to
determine the optimal order in which to complete
the tasks to minimize the total penalty.

For Example:

Task Deadline Penalty
A 2 days $ 200
B 1 day $ 500
C 3 days $ 100

Approach: Greedy Heuristic

Prioritize tasks based on a cost-benefit ratio,
such as minimizing penalties. In this scenario,
the heuristic would focus on completing tasks
with the highest penalties first if their deadlines

allow.

oy a
nena
nena
This

wWhy Greedy ?

The greedy approach works well here because

ways choosing the task with the highest
ty first (if possible), we minimize the overall

ty.

neuristic works because the most expensive

tasks have a higher cost of delay, so completing

them

earlier reduces potential penalties.

Activity

You are tasked with designing and implementing
sorting algorithms using a set of numbered index
cards, focusing on understanding different

algorithmic techniques and how they work In
practice.

< This marks the end of this lesson.

< In the next lesson we will learn about
Mathematical Foundations of Algorithms

THANK YOU

	Slide 1: MODULE 2: ALGORITHMIC THINKING
	Slide 2: Session 1: Algorithmic Thinking 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

