
MODULE 2: ALGORITHMIC

THINKING

Session 1: Algorithmic Thinking 1

Problem Identification and

Analysis

What is algorithm thinking?

Algorithmic thinking is a step-by-step approach

to solving problems by creating a sequence of

instructions, or algorithms, that lead to a solution.

It involves breaking down complex tasks into

smaller, manageable parts and designing logical

steps to accomplish each part efficiently

What is algorithm thinking? Cont….

Algorithmic thinking is somehow a pool of abilities that are connected
to constructing and understanding algorithms:

❖ The ability to analyze given problems - the ability to specify
a problem precisely.

❖ The ability to find the basic actions that are adequate to the
given problem.

❖ The ability to construct a correct algorithm to a given
problem using the basic actions.

❖ The ability to think about all possible special and normal
cases of a problem.

❖ The ability to improve the efficiency of an algorithm.

Problem Identification and Analysis

Problem Identification and Analysis involves

understanding and defining the problem,

including identifying the inputs and outputs,

and recognizing any constraints. It requires

breaking the problem into smaller parts and

analyzing its structure to determine the best

approach.

Steps in Problem Identification

and Analysis

The first step in solving any problem,

algorithmic or otherwise, is to define the

problem. This involves identifying the

problem's inputs, expected outputs,

requirements and constraints.

1. Define the Problem

Once you understand the problem, the next

step is to decompose the problem into

smaller, manageable sub-problems.

Create a flowchart or pseudocode to visualize

the problem.

2. Break Down the Problem

Decide on the algorithms and data structures

to be used. Outline the steps needed to solve

each sub-problem

3. Design the Algorithm

After designing the algorithm, you must

implement it in Python. This involves writing

Python code that follows the steps outlined in

your algorithm.

4. Implement the Algorithm

After implementing the algorithm, you should

test it to ensure it works correctly. This

involves running your Python code and

checking that it produces the expected output

for various input values.

5. Test the Algorithm

You should analyze your algorithm to

understand its efficiency. This involves

calculating your algorithm's time and space

complexity, which are measures of how the

algorithm's resource usage scales with the

input size.

6. Analyze the Algorithm

Problem: Given a list of numbers, find the

two numbers that add up to a specific target.

1. Define the Problem:

Input: List of numbers and a target number.

Output: Indices of the two numbers that add

up to the target.

Example:

2. Break Down the Problem:

Iterate through the list.

For each number, find another number in the

list that, when added to the first, equals the

target.

3. Design the Algorithm:

Consider cases where no two numbers add

up to the target.

Ensure the solution is efficient for large lists.

3. Implement the Algorithm:

def two_sum(nums, target):

num_dict = {}

for i, num in enumerate(nums):

complement = target - num

if complement in num_dict:

return [num_dict[complement], i]

num_dict[num] = i

return None

Example usage

numbers = [2, 7, 11, 15]

target = 9

result = two_sum(numbers, target)

print("Indices of numbers adding up to

target:", result)

Explanation:

This function accepts an array of numbers

and a target value.

Then through each pair of numbers in the

array checks when added sums up to the

target value

Activity

You are tasked with using heuristics and different

problem-solving approaches to find the shortest

route for visiting multiple cities. This activity helps

develop intuition for solving optimization problems

using heuristic methods.

5 minsPAUSE

Activity Feedback

❖ Understand how heuristics provide practical solutions for complex

optimization problems.

❖ Learn to apply different problem-solving approaches and compare

their effectiveness.

❖ Gain experience balancing solution quality with computational

efficiency.

❖ Develop critical thinking and algorithmic intuition in a hands-on

environment.

❖ This marks the end of this lesson.

❖ In the next lesson we will learn about

Problem Solving Approaches and

Heuristics

THANK YOU

	Slide 1: MODULE 2: ALGORITHMIC THINKING
	Slide 2: Session 1: Algorithmic Thinking 1
	Slide 3: What is algorithm thinking?
	Slide 4: What is algorithm thinking? Cont….
	Slide 5: Problem Identification and Analysis
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

