MODULE 2: ALGORITHMIC
THINKING

5 Session 1: Algorithmic Thinking 1

= —

i = 4 i
| 7
\ —
b,

Z
=
/
/
/
/I

Algorithmic thinking is a step-by-step approach
to solving problems by creating a sequence of
Instructions, or algorithms, that lead to a solution.

It involves breaking down complex tasks Into
smaller, manageable parts and designing logical
steps to accomplish each part efficiently

oA = z 7
| = CH & =
| 7 |
i = !
Y —— /
\\ //

Algorithmic thinking is somehow a pool of abilities that are connected
to constructing and understanding algorithms:

* The ability to analyze given problems - the ability to specify
a problem precisely.

% The ability to find the basic actions that are adequate to the
given problem.

% The ablility to construct a correct algorithm to a given
problem using the basic actions.

% The ability to think about all possible special and normal
cases of a problem.

% The ability to improve the efficiency of an algorithm.

= —

i = 4 i
| 7
| —
b,

Z

=

/

!

/
/I

Problem ldentification and Analysis involves
understanding and defining the problem,
Including identifying the inputs and outputs,
and recognizing any constraints. It requires
breaking the problem into smaller parts and
analyzing its structure to determine the best
approach.

1. Define the Problem

The first step In solving any problem,
algorithmic or otherwise, is to define the
problem. This Involves identifying the
problem's inputs, expected outputs,
requirements and constraints.

2. Break Down the Problem

Once you understand the problem, the next
step Is to decompose the problem into
smaller, manageable sub-problems.

Create a flowchart or pseudocode to visualize
the problem.

3. Design the Algorithm

Decide on the algorithms and data structures
to be used. Outline the steps needed to solve
each sub-problem

4. Implement the Algorithm

After designing the algorithm, you must
Implement it in Python. This involves writing

Python code that follows the steps outlined in
your algorithm.

5. Test the Algorithm

After implementing the algorithm, you should
test it to ensure it works correctly. This
Involves running your Python code and
checking that it produces the expected output
for various input values.

6. Analyze the Algorithm

You should analyze your algorithm to
understand its efficiency. This involves
calculating your algorithm's time and space
complexity, which are measures of how the
algorithm's resource usage scales with the
Input size.

Example:

Problem: Given a list of nhumbers, find the
two numbers that add up to a specific target.

1. Define the Problem:

Input: List of numbers and a target number.
Output: Indices of the two numbers that add
up to the target.

= —
| = 4 i
| 7
| —

b,

~ 2.Break Down the Problem:

terate through the list.

~or each number, find another number in the
Ist that, when added to the first, equals the
target.

3. Design the Algorithm:

Consider cases where no two numbers add
up to the target.

Ensure the solution is efficient for large lists.

>
!

!

/

| 3. Implement the Algorithm:

def two_sum(nums, target): Ex!olanatic_)n:
num_dict = {} This function accepts an array of numbers
for i, num in enumerate(nums): and a target value. _ |
complement = target - num Then through each pair of numbers in the
if complement in num_dict: array checks when added sums up to the
return [num_dict[complement], i target value

num_dictinum] = i
return None

Example usage

numbers =[2, 7, 11, 15]

target =9

result = two_sum(numbers, target)
print("Indices of numbers adding up to
target:", result)

Activity

You are tasked with using heuristics and different
problem-solving approaches to find the shortest
route for visiting multiple cities. This activity helps
develop intuition for solving optimization problems
using heuristic methods.

Activity Feedback

Understand how heuristics provide practical solutions for complex
optimization problems.

Learn to apply different problem-solving approaches and compare
their effectiveness.

Gain experience balancing solution quality with computational
efficiency.

Develop critical thinking and algorithmic intuition in a hands-on
environment.

< This marks the end of this lesson.

< In the next lesson we will learn

Problem Solving Approaches
Heuristics

THANK YOU

about
and

	Slide 1: MODULE 2: ALGORITHMIC THINKING
	Slide 2: Session 1: Algorithmic Thinking 1
	Slide 3: What is algorithm thinking?
	Slide 4: What is algorithm thinking? Cont….
	Slide 5: Problem Identification and Analysis
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

